https://nova.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 microRNA-21-mediated SATB1/S100A9/NF-kappa B axis promotes chronic obstructive pulmonary disease pathogenesis https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:49088 Thu 04 May 2023 13:43:05 AEST ]]> MicroRNA profiling reveals a role for microRNA-218-5p in the pathogenesis of chronic obstructive pulmonary disease https://nova.newcastle.edu.au/vital/access/ /manager/Repository/uon:33159 in vivo murine model of COPD, and primary human bronchial epithelial cells. Localization of miR-218-5p was assessed by in situ hybridization. In vitro and in vivo perturbation of miR-218-5p combined with RNA sequencing and gene set enrichment analysis was used to elucidate its functional role in COPD pathogenesis. Measurements and Main Results: Several miRNAs were differentially expressed among the different patient groups. Interestingly, miR-218-5p was significantly down-regulated in smokers without airflow limitation and in patients with COPD compared with never-smokers. Decreased pulmonary expression of miR-218-5p was validated in an independent validation cohort, in cigarette smoke-exposed mice, and in human bronchial epithelial cells. Importantly, expression of miR-218-5p strongly correlated with airway obstruction. Furthermore, cellular localization of miR-218-5p in human and murine lung revealed highest expression of miR-218-5p in the bronchial airway epithelium. Perturbation experiments with a miR-218-5p mimic or inhibitor demonstrated a protective role of miR-218-5p in cigarette smoke-induced inflammation and COPD. Conclusions: We highlight a role for miR-218-5p in the pathogenesis of COPD.]]> Thu 03 Feb 2022 12:18:37 AEDT ]]>